Existence and cost of boundary controls for a degenerate/singular parabolic equation

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we consider the following degenerate/singular parabolic equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} u_t -(x^\alpha u_{x})_x - \frac{\mu}{x^{2-\alpha}} u = 0, \qquad x\in (0,1), \ t \in (0,T), \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 0\leq \alpha <1 $\end{document}</tex-math></inline-formula> and id="M2">\begin{document}$ \mu\leq (1-\alpha)^2/4 are two real parameters. We prove boundary null controllability by means of a id="M3">\begin{document}$ H^1(0,T) control acting either at id="M4">\begin{document}$ x 1 or point degeneracy singularity id="M5">\begin{document}$ 0 $\end{document}</tex-math></inline-formula>. Besides give sharp estimates cost in both cases terms parameters id="M6">\begin{document}$ id="M7">\begin{document}$ \mu The proofs based on classical moment method Fattorini Russell recent results biorthogonal sequences.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence and Asymptotic Behavior for a Singular Parabolic Equation

We prove global existence of nonnegative solutions to the singular parabolic equation ut−∆u+χ{u>0}(−u−β+λf(u)) = 0 in a smooth bounded domain Ω ⊂ RN with zero Dirichlet boundary condition and initial condition u0 ∈ C(Ω), u0 ≥ 0. In some cases we are also able to treat u0 ∈ L∞(Ω). Then we show that if the stationary problem admits no solution which is positive a.e., then the solutions of the par...

متن کامل

Existence and Blow-up for a Nonlocal Degenerate Parabolic Equation

In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65

متن کامل

existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

this paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. we show that it has at least one or two positive solutions. the main tool is krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Control and Related Fields

سال: 2022

ISSN: ['2156-8499', '2156-8472']

DOI: https://doi.org/10.3934/mcrf.2021032